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Abstract A new evaluation method based on a genetic algorithm is applied for
simultaneous determination of the temperature-dependent thermal conductivity and
volumetric heat capacity from transient temperature measurement data at two points
according to the cooling down process of a three-layered infinite cylinder. Three test
cases are presented defined with the consideration of a proposed measurement concept.
The test cases use perfect and noisy artificial measurement data. The direct problem
is solved by a finite difference method, which was an elementary step of the inverse
solution. As the inverse solution is ill-posed, it is nearly impossible to get reliable final
results based on one genetic run (inverse solution). We propose making a ‘map’ of
the environment of the global optimum of every searched parameter. Using the map
the global optimum can easily be estimated in a very reliable and accurate way. The
results show very good agreement even for the case of noisy data between the original
material properties (global optimum) and the ones determined by the proposed evalu-
ation method (estimated global optimum). In this way, the proposed method has very
good potential in being used with real measurement data. Moreover, the presented
genetic algorithm can be an effective tool in a great variety of inverse heat conduction
problems.
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1 Introduction

The thermal conductivity and volumetric heat capacity are the major material proper-
ties in transient heat conduction phenomena. Knowledge of these properties is always
needed in solving technical problems connected to heat conduction. These two mate-
rial properties are generally not independent of temperature, and in most cases, the
character of their temperature dependence is unknown. The application of materi-
als with strongly temperature-dependent properties has been increasing (polymers,
composites, foams, etc.) due to the continuous development of material technology.

The subject of the actual research work is development of a measurement tech-
nique and an evaluation method for determination of the temperature-dependent ther-
mal conductivity and volumetric heat capacity that is characterized by the need of
a single transient measurement. The technique proposed in this article may simplify
the commonly used measurement methods where the characterization of the temper-
ature dependence of thermophysical properties needs time-consuming measurements
at every temperature span �T . To achieve our aim, the measurement and evaluation
should be matched and this process means several modifications on both sides.

The aim of this article is the presentation of three test cases of the evaluation method,
and proving that the proposed method has very good potential in being applied to real
measurement results. The test cases were defined considering the proposed measure-
ment technique.

The thermophysical properties of a material are usually determined using results
of some kind of temperature measurement. In this way, we have the output data (con-
taining measurement errors) of the heat conduction equation, and we need some of
the input parameters. This is an inverse heat conduction problem (IHCP). There are
several methods for solving such types of inverse problems [1,2], but none of them is
generally accepted. The IHCP is an intensively researched field of thermal sciences.

We can find many different methods among the classical approaches. Yang [3]
used a sequential method and a modified Newton–Raphson method for estimation
of the boundary conditions in a two-dimensional (2D) nonlinear IHCP. Zmywaczyk
[4] applied the modified Newton–Raphson method to determine temperature-depen-
dent thermophysical properties (kr , kz, ρcp) of an orthotropic material. Del Barrio
[5] identified heat sources in a 2D diffusion problem by the Lagrange theory. Poh-
anka et al. [6] applied the simplex method to determine the temperature-dependent
thermal properties (k, ρcp) of a fused silica shell. Chiwiacowsky and Campos Velho
[7] compared a non-classical (genetic algorithm) method with two classical methods
(conjugate gradient method and a quasi-Newton method) through the estimation of
the initial condition of a 1D slab.

The application of artificial-intelligence-based methods and evolutionary algo-
rithms to an IHCP has been spreading as a result of the rapid development of computer
science and technology. There are two main methods: neural networks and genetic
algorithms. Raudensky et al. [8] determined the boundary conditions and time con-
stant of a temperature sensor based on temperature readings from the sensor by a neural
network. Shiguemori et al. [9] following the work of Krejsa et al. [10] studied two
different neural networks (multilayer perceptron and radial base function) to estimate
the heat flux versus time function as a boundary condition of a 1D slab. Deng and
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Hwang [11] applied the back propagation neural network to estimate the boundary
condition in 1D and 2D cases of IHCP.

The genetic algorithms (GA) work similarly to the biological evolution of nature
[12,13]. The GAs are mostly said to be optimization methods searching for the best
solution of an ill-posed problem. The searching process is controlled by the objective
function. The GAs can work with a lot of unknown variables and have the ability to
find the global optimum of a problem. This makes genetic algorithms applicable for
the solution of IHCPs. Raudensky et al. [14] determined the heat transfer coefficient
history of a 1D slab using GA. Woodbury [15] used GA for the estimation of the surface
heat flux history of a 1D slab. Chiwiacowsky et al. [16] applied parallel GA to determine
the initial condition of an insulated 1D slab. Garcia [17] elaborated an extended elitist
GA algorithm to estimate simultaneously the orthotropic thermal conductivity kx,ky

and volumetric heat capacity ρcp from experimental temperature histories and known
heat flux with respect to a composite material. Zmywaczyk [18] proposed a hybrid
method of differential evolution (DE), described primarily by Price and Storn in [19],
later on developed in [20], and the Levenberg–Marquardt algorithm for simultaneous
estimation of temperature-dependent thermophysical parameters (kr , kz, ρcp).

2 Problem-Solving Method

The prior determination of the measurement concept has to be the first step in devel-
opment of the evaluation method. A sample in the form of a hollow cylinder with an
inside core and an outer shield is a generally applied arrangement used to determine
its thermophysical properties. In steady-state conditions the thermal conductivity is
determined by the measured temperature difference between the core and the shield.
This arrangement can be applied in the case of transient measurements as well. The
advantage of applying a cylindrical sample is that 1D heat conduction can be per-
formed by properly applied boundary conditions. The measurement of the transient
temperatures on the inner and outer surfaces of the sample is performed by thermo-
couples placed in the core and the shield (Fig. 1). While performing an experiment,
the core-sample-shield system is heated to a predefined homogeneous temperature
and next it is cooled by forced air flow during which the transient temperatures on the
inner and outer surfaces of the sample (Fig. 1) are recorded (one step cooling down).

The evaluation method means determination of the temperature-dependent mate-
rial properties from the measured transient temperature data. In order to solve this
inverse problem by a GA we have to solve the transient heat conduction problem in
the core-sample-shield cylindrical system (direct problem) which is an elementary
step of the GA. The essence of the inverse solution is to find the set of thermophysical
parameters when the fit of the calculated transient temperatures is in agreement with
the measured ones.

In this article, we present three test cases of the evaluation method with perfect
and noisy artificial measurement data. The test cases were defined according to the
proposed measurement concept. In all test cases we have to find the temperature-
dependent thermal conductivity and volumetric heat capacity from the artificial
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Fig. 1 Proposed measurement arrangement (1 thermocouple in the core, 2 core, 3 sample, 4 shield,
5 thermocouple in the shield)

measurement data. In two cases the artificial measurements have no errors; in the
third case they have random error with the specified magnitude.

3 Solution of the Direct Problem

The direct solution means determination of the transient temperature field of the
cylindrical system formed by three layers (see Fig. 1) with temperature-dependent
thermophysical properties. The task is to solve the 1D partial differential equation of
the heat conduction written in a cylindrical coordinate system for the case of temper-
ature-dependent material properties. On the outer surface of the three-layer cylindri-
cal system, the boundary condition of the 3rd kind (heat convection) is considered.
A homogeneous initial temperature distribution at time t = 0 is assumed. The equation
of energy conservation has the following form:

ρcp (T )
∂T

∂t
= k (T )

∂2T

∂r2 + ∂k (T )

∂T

(
∂T

∂r

)2

+ 1
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= h (TR − T∞) (1.2)

T (r, t = 0) = T0 (1.3)

where h is the heat transfer coefficient, TR is the temperature of the outer surface of the
shield, and T∞ is the temperature of the forced air flow. The temperature-dependent
thermal conductivity k(T ) and the volumetric heat capacity ρcp(T ) are assumed to
be linear as follows:

ρcp(T ) = a1T + a0 k(T ) = b1T + b0 (2)

Equation 1 is solved using the finite difference method, central differences for space,
and the explicit Euler method for time integration. The finite difference form of Eq. 1
is as follows:

123



Int J Thermophys (2009) 30:1975–1991 1979

Fig. 2 Finite difference grid at the interfaces of the layers
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where the index k refers to the time and the index i refers to the space. Equation 3 is
not applicable in special grid points. The points that need special treatment are located
at the center of the cylinder (r = 0), on the interfaces of the layers (r = R1, R2) and
at the outer surface of the cylinder (r = R).

The boundary condition applied on the interfaces of the layers (r = R1, R2) comes
from the set of Eq. 4. Equations 4.1 and 4.2 represent the equation of energy conser-
vation considering that the K interfacial point (Fig. 2) belongs to materials 1 and 2.
Two virtual points (T ′

A and T ′
C) also have to be considered. Equation 4.3 represents

the equality of the heat fluxes. The two virtual points should be eliminated from the
set of Eq. 4 to get the proper equation to be applied on the interfaces of the layers. The
result is very complex and there is no room here to present it.
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The solution of the direct problem is an elementary step of the inverse solution, and
because of this, it should be used many times. The reduction of the CPU time of the
direct solution was an especially important challenge. To achieve this aim, we gener-
ated and tested different calculation versions using simplifications in the mathematical
formulation. (Moreover, we solved Eq. 1 by the Crank–Nicolson method as well, but
the explicit method proved to be more efficient [21].) Because of the simplifications
used, we had to take care about the accuracy in addition to the reduction of the CPU
time. We tested the effect of changing the stability coefficient and the grid refinement
as well. The reference calculations were verified by analytical and finite-element (FE)
calculations (more details in [21]). Finally we reduced the CPU time of one direct
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calculation from 15.3 s to 0.7 s with an average absolute deviation of 0.097 ◦C when
compared to the reference calculation values. For obtaining the results in this article,
we used the explicit calculation version called Exp130 in [21]. The calculation of the
direct solution is performed by a program written in the Matlab environment by the
authors.

4 Solution of the Inverse Problem

The inverse solution of the boundary-value problem means in this case determination
of the temperature-dependent thermal conductivity and volumetric heat capacity from
the artificial measurement data. We intend to measure the transient temperature at the
inner and outer surfaces of the sample (Fig. 1) during a cooling process. According
to this, the artificial measurement data means the temperature versus time history of
the cooling process at the two interfacial points mentioned above. The artificial mea-
surement data are generated using the result of a direct solution. This way we know
the accurate material properties that we are searching with the algorithm, and we can
compare the accurate properties with the ones found by the algorithm.

The IHCPs belong to the ill-posed boundary-value problems. The genetic algo-
rithms have been successfully applied in solving such a kind of problems. Genetic
means that the algorithm tries to model the biological evolution. The “search space”
contains the solutions of the problem. The algorithm is working in parallel on a number
of candidates of the solution. The possible solutions are called entities. The entities
can be optimal, less optimal, or unacceptable. A certain group of entities forms the
population. During the evolution of the population, further and further generations are
created. The entities (solutions of the problem) are coded into a data structure, and the
algorithm applies different genetic operators on this data structure. The operators are
similar to the biological descent keeping the valuable information. The genetic algo-
rithm assures survival and spreading of the best entities in the new generation. The key
issue of the genetic algorithms is the selection and coding of the major characteristics
of the problem (representation), and moreover, the selection of the proper objective
function that is used for ranking the entities.

The task of the genetic algorithm is to find the entities (sets of material properties)
when best matching exists among the measured (artificial in this case) and calculated
transient temperature data. For better understanding of the algorithm structure, see
Fig. 3. The temperature dependence of the material properties is considered to be
linear. This way we want to determine four parameters (a0, a1, b0, b1) according to
Eq. 2. It means that one entity (e) is characterized by four parameters:

e = [a0, a1, b0, b1] (5)

The parameter values are picked up from a given range. The population consists of
30 entities and the first generation is formed randomly—(Step 1 in Fig. 3). The objec-
tive function E (Eq. 6) is based on the absolute discrepancy between the artificial
measurement and the calculated transient temperature data. To calculate the objective
function, the direct problem has to be solved for every entity—(Step 2 in Fig. 3). The
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Fig. 3 Structure of the applied genetic algorithm

objective function is then calculated as the sum of the absolute discrepancies in 100
time steps for the inner surface and in 100 time steps for the outer surface of the sample
as follows:

E =
100∑
i=1

∣∣T e
i,h1 − T am

i,h1

∣∣ +
100∑
i=1

∣∣T e
i,h2 − T am

i,h2

∣∣ (6)

where the index h1 refers to the inner surface, and h2 refers to the outer surface of the
sample, the index i refers to different time steps, e refers to the temperature results
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of the actual entity, and the index am refers to the artificial measurement data. The
absolute discrepancy was chosen as the objective function instead of the commonly
used squared errors, because we think that the absolute discrepancy is more expressive
and easier to understand. The applied GA uses rank selection, so we need only the
rank of the entities. In this way, the absolute value of the objective function does not
have an effect on the algorithm.

Reasons for using 100 time steps:

– We think that it is sufficient to calculate the difference between two non-periodical
curves.

– Usually one direct calculation has about 10,000 to 50,000 time steps. Using only
100 time steps in the objective function, we do not have to treat such big vectors
in the GA, and the algorithm runs faster.

– The direct calculation needs different number of time steps depending on the tested
material. (The direct calculation usually ends when the dimensionless temperature
is about 0.05.) With a predefined number of time steps in the objective function,
its scale is the same in all cases.

During the evaluation process the values of the objective function are calculated
for every entity and they are ranked into increasing series (the minimum is the best)—
(Step 3 in Fig. 3). Termination of the algorithm happens if the previously defined
number of the generation has been reached or the objective function has reached its
preset limit (Step 4 in Fig. 3). If the requirements of the termination are not met, a
new generation is born (Step 5 in Fig. 3). In the process of generating the new gener-
ation the best entity remains in the original form (elitism). Four entities are generated
from the best one by creep or mutation. Creep means multiplying all parameters by a
number randomly selected from the range of (1 − cr p, 1 + cr p), where crp is a previ-
ously defined number between 0 and 1 [12,15]. Mutation means changing a randomly
selected parameter with a new one picked up randomly from a given range. This range
is determined as in the case of creep. Fifteen entities are generated applying the usual
reproduction method: selection, crossover, and mutation or creep. The “parents” are
selected randomly from a previously defined number of the best entities. During cross-
over the randomly selected proper parameters of two parents are exchanged. There is
a threshold for mutation and creep, which means that every entity has a previously
defined chance to mutate and creep. The last 10 entities are generated similarly to the
first generation to favor the finding of the global optimum of the solution. Applying
the genetic operators, care had to be taken to the fact that the parameters are not inde-
pendent from each other (a1 depends on the value of a0, and b1 depends on the value
of b0). The calculation of the inverse solution is performed by a program written in
the Matlab environment by the authors.

In Fig. 3, the boxes with continuous edges show the steps of the algorithm, the con-
tinuous lines between these boxes show the process of the algorithm, the dashed lines
show the way of information, the dashed border boxes show the type of information,
the index p refers to the number of the entity in the population, the index n refers to
the number of the generations, bold letters refer to a data set of variables of a different
kind, and underlined letters refer to a data set of variables of the same kind. In Fig. 3,
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one can find the type of input and output data for the algorithm itself and also for all
steps of the algorithm.

5 Results

Here, we present the results of three test cases of the evaluation method using artificial
measurement data in it. For all test cases we wanted to determine the temperature-
dependent thermal conductivity and volumetric heat capacity, which means there were
four unknown parameters to be estimated according to the method described in Sect. 4.
In all test cases we used the same initial and boundary conditions, and the material
properties of the core and shield were also assumed to be the same. The thermophysical
properties of the core and the shield were similar to those for stainless steel (according
to our plans about the real measurement equipment). The thermophysical properties of
the core and shield were considered to be constant because the result of the set of Eq.
4 became much simpler and the CPU time of one direct calculation became shorter.
Otherwise, consideration of a realistic temperature dependence for the case of the core
and shield has a slight effect on the examined transient temperature curves. In Test
Case 1, the material properties of the sample used were those for polytetrafluoroeth-
ylene (PTFE). In Test Case 2, we used the same sample material properties at 0 ◦C as
in Test Case 2, but the gradient of the temperature dependence was increased. In both
Test Cases 1 and 2, the artificial measurement data had no errors. In Test Case 3, the
sample material properties were the same as in Test Case 2, but random measurement
errors over the range [−0.5 ◦C,+0.5 ◦C] were added to the artificial measurement
data. The parameter values of the test cases can be found in Table 1, where a.m. refers
to the artificial measurement data, T0 refers to the initial temperature, T∞ refers to
the ambient temperature, h refers to the heat transfer coefficient, R refers to the outer

Table 1 Parameters of the three test cases

Core and shield Sample Sample Sample

Test Case 1 Test Case 2 Test Case 3

Constant 0 ◦C 200 ◦C 0 ◦C 200 ◦C 0 ◦C 200 ◦C

k 18 0.24 0.204 0.24 0.18 0.24 0.18 (W · m−1 · K−1)

c 460 1833 1980 1833 2367 1833 2367 (J · kg−1 · K−1)

ρ 7800 1200 1200 1200 1200 1200 1200 (kg · m−3)

a.m. Perfect Perfect Noisy

T0 200 ( ◦C)

T∞ 20 ( ◦C)

h 47.6 (W · m−2 · K−1)

R 25 ( mm)

R1 3 ( mm)

R2 23 ( mm)

g 26
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Table 2 Parameters of the genetic runs

Test Case 1 Test Cases 2 and 3

Min Max Min Max

a0 2 3 2 3 (MJ · m−3 · K−1)

a1 −35 35 −50 50 (%)

b0 0.1 0.5 0.1 0.5 (W · m−1 · K−1)

b1 −35 35 −50 50 (%)

Max. number of generations 200

Limit of the objective function 5 ( ◦C)

Number of parents 15

Mutation chance 50 (%)

Creep chance 50 (%)

Creep coefficient 0.05

radius of the shield, R1 refers to the inner radius of the sample, R2 refers to the outer
radius of the sample, and g refers to the number of grid points. The assumed tempera-
ture dependencies of the sample material properties were given in Eq. 2. The value of
the heat transfer coefficient was determined as a result of a measurement performed by
the proposed equipment with a copper reference sample. The heat transfer coefficient
was evaluated using a lumped thermal capacity model.

In all test cases we used the same parameters for the genetic operators and the same
ending conditions. The algorithm terminates after 200 generations in the test cases
or when the objective function is below a defined limit (5 ◦C in the test cases). The
searching limits of the parameters are a bit different in the three test cases because of
the different sample material properties. The searching limit for the a1 and b1 parame-
ters is defined in percentage. This means the percentage deviation between the material
property at the point of the maximum temperature and at 0 ◦C, respectively. For exam-
ple, the thermal conductivity at the maximum temperature in Test Case 1 cannot be
higher than 0.5 W · m−1 · K−1 + 35 % = 0.675 W · m−1 · K−1. The parameters of the
genetic operators, ending conditions, and searching limits can be found in Table 2.

In Fig. 4, a convergence diagram of 10 genetic runs is presented. The objective
function value of the best entity of the actual generation is plotted as a function of the
number of generations (Test Case 1). In some cases the convergence gets very slow
after some generations, and sometimes the objective function value is continuously
decreasing. The algorithm has the ability to step out from a local minimum area of the
objective function to a better one as the continuous grey curve shows in Fig. 4.

In the genetic algorithm there are a lot of random operations. In this way, the algo-
rithm always stops with a different objective function value (E) and parameter set (e).
Our experience was that there is no definite relation between the objective function
value and the accuracy of the estimation of the material parameters in e. It is because
the inverse solution is ill-posed. It is nearly impossible to get reliable final results
based on one genetic run. We propose making a “map” of the environment of the
global optimum of every searched parameter. Using the map, the global optimum can
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Fig. 4 Convergence diagram of 10 genetic runs with the same parameters (Test case 1)

easily be estimated in a very reliable and accurate way. To create the map, we use the
results of 100 independent genetic runs (inverse solutions) with the same settings in all
test cases. The creation of the map and the estimation method of the global optimum
are described below.

5.1 Results of Test Case 1

In Fig. 5a–d, the results of 100 independent genetic runs are shown. Every point in the
diagrams comes from the best entity of the last generation of a run. We plot the volu-
metric heat capacity and the thermal conductivity at 0 ◦C and at 200 ◦C as a function
of the objective function value of the entity under consideration. (In Fig. 5a, c the a0
and b0 parameters of the genetic algorithm are plotted, respectively, but in Fig. 5b,
d, the results are calculated from the a1 and b1 parameters of the genetic algorithm,
respectively, for better understanding of the results.) An entity has a data point in all
four—a, b, c, and d—diagrams. For example, a point at E = 128 ◦C can be found
in all four diagrams, and these points belong to the same entity. The horizontal line
on the diagrams means the original material property what we wanted to find (global
optimum).

The results in Fig. 5a–d clearly show that the material properties found by the
genetic algorithm converge to the original ones if the objective function values are
decreasing. Lower- and upper-limit curves can be found for all four diagrams, and
these limit curves intersect each other nearly perfectly at the original material prop-
erty. In this case, these limit curves are quite symmetric to the original property and are
nearly linear. There are a lot of results inside these limit curves. For example in Fig. 5c
we can find an entity very close to the original material property with an objective
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(a) (b)

(d)(c)

Fig. 5 Results of Test Case 1. (a) ρc at 0 ◦C, (b) ρc at 200 ◦C, (c) k at 0 ◦C, and (d) k at 200 ◦C

function value of about 100 ◦C. We can find this entity in the other diagrams as well
(the point with the same objective function value). If we check this entity in Fig. 5a,
b, we can see that it is quite far from the original property and the tendency of the
temperature dependence is the opposite of the searched one (in Fig. 5a the value of
this entity is higher than in Fig. 5b). This is because we have quite a high value for the
objective function (as the objective function value is determined by all parameters of
one entity).

5.2 Results of Test Case 2

The results of Test Case 2 can be found in Fig. 6a–d. The method of plotting the
results is the same as in Test Case 1. In Test Case 2, the gradient of the temperature
dependence of both material properties is higher than in Test Case 1. We obtained
consistent results to the original material properties for both the material properties at
both the temperature levels. Similar to Test Case 1, lower- and upper-limit curves can
also be found here in all four diagrams and these curves also tend to intersect each
other at the original material property. The lower-limit curve in Fig. 6a is affected by
the searching limit of the a0 parameter. In Fig. 6b, the upper-limit curve also looks
like it has a limit of 3 MJ · m−3 · K−1, but it is also the effect of reaching the lower
limit of the a0 parameter as the upper limit at 200 ◦C was 3 MJ · m−3 · K−1 + 50 %.
Besides this, the upper- and lower-limit curves tend to be linear (before reaching the
parameter limits), but unlike Test Case 1, these are not symmetrical with the original
material property value just below the objective function value of 20 ◦C. In Test Case
2, there are also some results inside the limit curves; the explanation is the same as in
Test Case 1.
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(a) (b)

(d)(c)

Fig. 6 Results of Test Case 2. (a) ρc at 0 ◦C, (b) ρc at 200 ◦C, (c) k at 0 ◦C, and (d) k at 200 ◦C

5.3 Results of Test Case 3

In Test Case 3, the artificial measurement data were noisy and the original material
properties were the same as in Test Case 2. We added a random error to the perfect
artificial measurement data from the range of [−0.5 ◦C, 0.5 ◦C]. The objective func-
tion value can be calculated between the perfect and noisy artificial measurement data.
Theoretically this value is 50 ◦C (as we have 200 temperature data points), and in this
specific case it is 48.96 ◦C. This means that the objective function value during the
genetic runs should converge to 48.96 ◦C instead of 0 ◦C like in the case of perfect
artificial measurement data (Test Cases 1 and 2).

The results of Test Case 3 can be followed in Fig. 7a–d. The method of plotting the
results is the same as in Test Cases 1 and 2. The results clearly converge to the original
material properties at the objective function value of about 50 ◦C. The results are quite
similar to the results of Test Cases 1 and 2. There are also lower and upper-limit curves
in all four diagrams. These curves are also close to linear but not so clearly as in Test
Case 1 or 2. The results are quite symmetric to the original material property value in
all four diagrams below the objective function value of 60 ◦C.

5.4 Estimation Method of the Global Optimum

Using this evaluation method for real measurements, we do not know the origi-
nal material properties. We have to select or calculate the final material properties
(estimated global optimum) from the results of a set of genetic runs. The first is plot-
ting the results like Figs. 5, 6, and 7. After that we propose two possible ways:

123



1988 Int J Thermophys (2009) 30:1975–1991

(a) (b)

(d)(c)

Fig. 7 Results of Test Case 3. (a) ρc at 0 ◦C, (b) ρc at 200 ◦C, (c) k at 0 ◦C, and (d) k at 200 ◦C

(a) We can choose the entity with the lowest objective function value if the results
clearly show lower- and upper-limit curves and these tend to intersect each other
close to this entity.

(b) The results usually tend to be symmetric with the original value (global opti-
mum) below a limit of the objective function. We have to select this limit and
simply calculate the average of the resulting material properties with an objective
function value below this limit.

If we need to be sure, we can apply both methods and compare the results. The
comparison of the original (global optimum) and final material properties (estimated
global optimum) gained using both the proposed methods for Test Cases 1, 2, and 3
is given in Table 3. In most cases choosing the best entity gives the better result than
the average calculation, but the difference is not too significant. Choosing the best
entity gives less than 0.4 % deviation in the case of both material properties and both
temperature levels when compared to the original ones in Test Cases 1 and 2, which
means very good accuracy for the case of perfect artificial measurement data. In Test
Case 3, choosing the best entity as a final result has a maximum percentage deviation
of 1.22 % when compared to the original material properties. This is also a very good
result considering the noisy artificial measurement data.

It should be mentioned that the determined material properties can be applied only
in the 20 ◦C to 200 ◦C temperature range, because the cooling process starts at 200 ◦C
and ends at 20 ◦C in the proposed measurement equipment.

In Fig. 8a–c the final results of Test Case 3 are presented using the best entity. In
Fig. 8a, the temperature versus time history calculated with the material properties of
the final result of Test Case 3 and the applied artificial measurement data are shown.
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Fig. 8 Final results of Test Case 3 using the best entity

The agreement between the curves is so good that we had to enlarge a part of it to
show the different curves. In Fig. 8b, c the original and the final material properties of
Test Case 3 are shown as a function of the temperature. There is very good agreement
between the curves for the case of both material properties.

6 Conclusion

We tested a new genetic-algorithm-based evaluation method for simultaneous determi-
nation of the temperature-dependent thermal conductivity and volumetric heat capacity
from transient temperature measurement data at two points according to the cooling
process of a three-layered infinite cylinder. Three test cases were presented which
were defined considering our proposed measurement concept. We used perfect artifi-
cial measurement data for Test Cases 1 and 2, and noisy artificial measurement data
for Test Case 3. The direct problem was solved by the finite difference method, which
was an elementary step of the inverse solution.

As the inverse solution is ill-posed, it is nearly impossible to get reliable final results
based on one genetic run (inverse solution). We propose making a “map” of the envi-
ronment of the global optimum of every searched parameter. Using the map the global
optimum can easily be estimated in a very reliable and accurate way.

To create the map we used the results of 100 independent genetic runs with the same
settings in all test cases. Plotting the searched material properties as a function of the
objective function value of the GA, lower- and upper-limit curves could be found in
all test cases and for all material properties. The lower- and upper-limit curves tend to
intersect each other at the original material property (global optimum), which proves
the convergence of the algorithm. For the determination of the final material properties
(estimated global optimum), we proposed two methods: selection of the best entity
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and/or the average method. In the test cases with perfect artificial measurement data,
the best entity method had less than 0.4 % deviation for the case of both material prop-
erties and both temperature levels when compared to the original ones. In Test Case 3
with noisy artificial measurement data, the maximum percentage deviation was 1.22
when compared to the original properties. These results prove that the presented eval-
uation method works very well even with noisy temperature data and in this way it has
very good potential in using it with real measurement data. Moreover, the presented
genetic algorithm can be an effective tool in a great variety of IHCPs.
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